Research led by the Hubrecht Institute and the University Medical Center Utrecht has uncovered a key molecular mechanism that helps control heart regeneration in zebrafish. A protein known as leucine-rich repeat-containing 10 (LRRC10) acts as a switch to stop uncontrolled proliferation of cardiomyocyte cells when regeneration is complete. As reported in the May 18, 2023, issue of Science, lead author Jeroen Bakkers and colleagues found that the LRRC10 pathway was conserved in mouse and human cells.
Using single-cell RNA sequencing of deer antler at different stages of their annual cycle of regeneration, Chinese researchers have identified a progenitor cell population that drove antler regeneration. The authors of an accompanying editorial wrote the findings, which were published in the Feb. 24, 2023, issue of Science, “add to the emerging idea that blastema progenitor cells are a common stem cell type in mammalian appendage regeneration.”
Unlike amphibians, mammals do not regenerate appendages. Except when they do. “If you amputate one of the branches off of the antler [of a reindeer], it will also regenerate,” Jeff Biernaskie told BioWorld. Even without amputation, the antlers of both male and female reindeer regenerate annually, including their skin. That regeneration is “the only large mammal model of true skin regeneration,” he said.
The first in vivo cell atlas of senescent tissue in skeletal muscle has identified the damaging properties of these cells and explained why they block muscle regeneration. According to a study at Pompeu Fabra University led by scientists from Altos Labs Inc., cell damage caused the senescence of the cells, which secreted toxic substances into the surrounding microenvironment, causing fibrosis and preventing tissue regeneration.
Unlike amphibians, mammals do not regenerate appendages. Except when they do. “If you amputate one of the branches off of the antler [of a reindeer], it will also regenerate,” Jeff Biernaskie told BioWorld. Even without amputation, the antlers of both male and female reindeer regenerate annually, including their skin. That regeneration is “the only large mammal model of true skin regeneration,” he said.
As they matured from prenatal to adult, heart cells reduced the number of nuclear pores by more than 60%. That decrease protected them from the consequences of stress, but also impaired their ability to regenerate. “These findings are an important advance in fundamental understanding of how the heart develops with age and how it has evolved to cope with stress,” senior author Bernhard Kühn, professor of pediatrics and director of the Pediatric Institute for Heart Regeneration and Therapeutics at the University of Pittsburgh School of Medicine, said in a press release. Kühn and his colleagues published those findings in the Oct. 24, 2022, issue of Developmental Cell.
Fibroblasts expressing the tumor suppressor p16INK4a (a marker of senescence) stimulated lung stem cells from young mice to repair damaged tissue, according to a study from the University of California, San Francisco (UCSF). The finding calls into question therapies that eliminate these senescent cells without considering their beneficial role in tissue homeostasis.
In contrast to most adult mammalian tissues, the liver can regenerate itself to an impressive degree. That regeneration is critical to survival – as a key digestive organ, the liver deals with all sorts of toxins, from rotten-ish food in the wild to alcohol in more cultured settings.
DUBLIN – Novadip SA raised €19 million (US$22.1 million) in a first close of a series B round to progress its autologous bone regeneration therapy, NVD-003, on either side of the Atlantic. The company is also working on an allogeneic regenerative approach, which is still preclinical.