Researchers in the U.K. have succeeded in reverse engineering the defective cryptic splicing that drives amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) to enable precisely targeted delivery of transgenes and therapeutic protein expression in diseased neurons. The technique is compatible with conventional adeno-associated viral vectors that are approved for gene therapy, and can readily be adapted for different transgenes. ALS, FTD and other neurogenerative diseases are underpinned by loss of function of the RNA-binding protein TDP-43 (transactive response DNA-binding protein 43), that normally functions as a key regulator of splicing, protecting the transcriptome from toxic cryptic exons.