Malaria is caused by Plasmodium species that infect hundreds of millions of people annually. Among the plasmodia, Plasmodium falciparum is considered the most dangerous due to frequent severe clinical complications and high mortality rates. Researchers from the University of California at Riverside described the discovery and mechanism of action of MED-6189, a kalihinol analog effective against drug-sensitive and drug-resistant P. falciparum strains in vitro and in vivo.
Noul Co. Ltd.’s Micro-Intelligent Laboratory, an artificial intelligence-powered diagnostic system, demonstrated superiority over microscopic diagnosis for malaria in a study presented at the 2024 International Congress for Tropical Medicine and Malaria.
The increasing resistance to intravenous artemisinin therapy for malaria highlights the urgent need for new treatments that offer better patient compliance and a single-dose cure to address this global health threat. Novartis AG recently presented the discovery, development and evaluation of aminoisoquinolines as fast-acting intravenous therapeutic agents for severe malaria treatment.
Novel antimalarials are urgently needed to face the challenge of increasing parasite resistance. The isoprenoid precursor biosynthesis pathway is an attractive target for developing novel antimalarial drugs, being an essential and specific pathway in apicomplexan parasites.
The Global Health Innovative Technology (GHIT) Fund has announced a total investment of approximately ¥1.64 billion (US$10.8 million) in four projects for the development of new drugs for malaria and neglected tropical diseases.
Vaccination with infectious Plasmodium falciparum sporozoites (PfSPZ) administered with antimalarial drugs (PfSPZ-CVac) is more effective than vaccination with replication-deficient, radiation-attenuated PfSPZ. However, the requirement for drug administration is a significant limitation of the PfSPZ-CVac strategy.
Because of increasing resistance to current antimalarial drugs, new agents with novel mechanisms of action are needed. Plasmepsins are a family of 10 Plasmodium falciparum aspartic proteases (PMI to PMX), among which plasmepsins IX and X (PMIX and PMX) have been identified as potential targets due to their involvement in egress, invasion and parasite development.
Noze Inc. is hot on the trail of tuberculosis with its Diagnoze hand-held system that can detect the disease by its smell. The company, formerly known as Stratuscent, received additional support from the Bill & Melinda Gates Foundation to fund a study evaluating a breathalyzer designed to detect tuberculosis in high-burden countries.
With its sights set on expanding the commercial launch of Xdemvy (lotilaner ophthalmic solution, 0.25%) to treat Demodex blepharitis in the U.S., Tarsus Pharmaceuticals Inc. has priced an underwritten public offering of common stock, selling 2.8 million shares for $32 each, taking the expected gross proceeds to about $100 million.